Di- μ-chloro-bis[μ-1,2-bis(diphenylphosphinothioyl)ethane]-dicopper(I)

By Kevin L. Brown
Chemistry Division, DSIR, Private Bag, Petone, New Zealand

(Received 10 October 1978; accepted 1 November 1978)

Abstract

C}_{52} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{P}_{4} \mathrm{~S}_{4}, \quad \mathrm{Cu}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2} \mathrm{~S}_{2}\right)_{2} \mathrm{Cl}_{2}\), $M_{r}=1123 \cdot 12$, monoclinic, $P 2_{1} / n, a=13 \cdot 225$ (1), $b=$ 14.615 (2), $c=14.056$ (2) $\AA, \beta=105.99$ (1) ${ }^{\circ}(\mathrm{Cu}$ $K \alpha, \lambda=1.5418 \AA) ; Z=2, D_{m}=1.43, D_{c}=1.43 \mathrm{Mg}$ $\mathrm{m}^{-3}, R=0.052$ for 2189 diffractometer data. The molecule exists as a dimer containing a crystallographic centre of symmetry. The Cu atoms are bonded to two S and two Cl atoms in a distorted tetrahedral geometry. Both the Cl atoms and the ligand act as bridges between the two Cu atoms.

Introduction. Phosphine sulphides of the type $R_{2} \mathrm{P}(\mathrm{S})\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{~S}) \mathrm{P} R_{2}$ form a series of bidentate metal complexes with transition metals. For bis(diphenylphosphinothioyl)methane (bdtm), $R=\mathrm{C}_{6} \mathrm{H}_{5}$ and $n=1$, the complex $\mathrm{Cu}^{1}(\mathrm{bdtm}) \mathrm{Cl}$ was isolated. An X-ray crystal analysis showed this complex to be a threecoordinated Cu monomer. The infrared spectrum of the equivalent ethane complex ($R=\mathrm{C}_{6} \mathrm{H}_{5}, n=2$), $\mathrm{Cu}(\mathrm{bdte}) \mathrm{Cl}$, suggested that it was not isostructural with $\mathrm{Cu}(\mathrm{bdtm}) \mathrm{Cl}$, but instead had a chloro bridging structure (Ainscough, Bergen, Brodie \& Brown, 1976). The present determination was undertaken to confirm this point.
The crystals were colourless octahedra. Intensities and cell dimensions were obtained from a crystal with maximum and minimum dimensions 0.25 and 0.11 mm . The systematic absences: $0 k 0, k \neq 2 n$ and $h 0 l, h$ $+l \neq 2 n$, indicated space group $P 2_{1} / n$. Cell dimensions were determined by least-squares refinement of the parameters of 12 reflections centred on a Hilger \& Watts automated diffractometer. Data were collected to a maximum of $\theta=53^{\circ}$ (Ni-filtered $\mathrm{Cu} K \alpha, \theta-2 \theta$ scan, scan width $=0.70^{\circ}$, scan time $=105 \mathrm{~s}$). Three standard reflections measured periodically showed only random fluctuations of $\pm 1.5 \%$.
Intensity measurements were obtained for 3152 reflections, of which 2189 were considered observed (I $>3 \sigma_{I}$). Absorption corrections were applied (de Meulenaer \& Tompa, 1965), the transmission coefficients ranging from 0.495 to 0.661 . The structure was solved by direct methods and refined by a fullmatrix least-squares procedure with experimental weights $w=4 F_{o}^{2} / \sigma_{I}^{2}$. The non-hydrogen atoms were refined with anisotropic thermal parameters and only the positional parameters of the H atoms were refined
($U_{\mathrm{H}}=6.0 \AA^{2}$). At convergence (all shifts < e.s.d.'s), $R=0.052$ and $R_{\omega}=0.075$. A final difference synthesis showed no unusual features.

The atomic coordinates for the non-hydrogen atoms are given in Table 1, and a selection of bond lengths and angles in Table 2.* A general view of the molecule showing the numbering scheme is given in Fig. 1.

[^0]Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ for the nonhydrogen atoms (e.s.d.'s in parentheses)

	x	y	z
Cu	4215 (1)	825 (1)	197 (1)
S(1)	2826 (2)	476 (1)	823 (1)
S(2)	6150 (2)	-2136 (1)	746 (1)
P (1)	3425 (2)	-194 (1)	2082 (1)
P (2)	4850 (1)	-2594 (1)	1031 (1)
Cl	4076 (2)	-520 (1)	-1086(1)
C(1)	4405 (6)	-1023 (5)	1983 (6)
C(2)	3943 (6)	-1684 (5)	1138 (5)
C(101)	2437 (6)	-833(5)	2465 (6)
C(102)	1397 (8)	-840 (7)	1942 (7)
C(103)	661 (8)	-1338 (9)	2266 (9)
C(104)	1024 (11)	-1863 (8)	3105 (9)
C(105)	2023 (10)	-1899 (8)	3626 (9)
C(106)	2741 (8)	-1378 (8)	3313 (7)
C(111)	4025 (7)	545 (5)	3111 (6)
C(112)	3449 (8)	875 (7)	3722 (8)
C(113)	3843 (11)	1472 (10)	4453 (9)
C(114)	4846 (12)	1774 (9)	4622 (8)
C(115)	5454 (10)	1477 (10)	3998 (10)
C(116)	5027 (9)	852 (8)	3253 (8)
C(201)	4069 (6)	-3356 (6)	104 (6)
C(202)	3969 (8)	-4280 (6)	281 (7)
C(203)	3389 (9)	-4843 (7)	448 (8)
C(204)	2864 (8)	-4482 (8)	-1343 (8)
C(205)	2963 (8)	-3563 (7)	-1541 (7)
C(206)	3553 (7)	-3013 (6)	-820 (6)
C(211)	5160 (6)	-3183 (5)	2205 (5)
C(212)	6157 (6)	-3528 (7)	2621 (7)
C(213)	6347 (8)	-3988 (8)	3528 (8)
C(214)	5612 (8)	-4058 (7)	4022 (7)
C(215)	4638 (8)	-3712 (7)	3608 (6)
C(216)	4388 (7)	-3290 (6)	2705 (6)

© 1979 International Union of Crystallography

Table 2. Selected bond lengths (\AA) and angles (${ }^{\circ}$) (e.s.d.'s in parentheses)

$\mathrm{Cu}-\mathrm{Cl}$	$2 \cdot 305$ (2)	$\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\prime}$	95.76 (10)
$\mathrm{Cu}-\mathrm{Cl}^{\prime}$	2.639 (2)	$\mathrm{Cl}-\mathrm{Cu}-\mathrm{S}(1)$	121.07 (10)
$\mathrm{Cu}-\mathrm{S}(1)$	$2 \cdot 303$ (3)	$\mathrm{Cl}-\mathrm{Cu}-\mathrm{S}(2)$	119.46 (10)
$\mathrm{Cu}-\mathrm{S}(2)$	$2 \cdot 305$ (3)	$\mathrm{S}(1)-\mathrm{Cu}-\mathrm{S}(2)$	109.92 (9)
$\mathrm{S}(1)-\mathrm{P}(1)$	1.986 (3)	$\mathrm{S}(1)-\mathrm{Cu}-\mathrm{Cl}^{\prime}$	$100 \cdot 62$ (10)
$\mathrm{S}(2)-\mathrm{P}(2)$	1.985 (3)	$\mathrm{S}(2)-\mathrm{Cu}-\mathrm{Cl}^{\prime}$	105.19 (10)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.807 (9)	$\mathrm{Cu}-\mathrm{S}(1)-\mathrm{P}(1)$	106.57 (11)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.523 (10)	$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	112.4 (3)
$\mathrm{C}(2)-\mathrm{P}(2)$	1.825 (8)	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$110 \cdot 1$ (5)
$\mathrm{P}(1)-\mathrm{C}(101)$	1.806 (9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{P}(2)$	113.2 (5)
$\mathrm{P}(1)-\mathrm{C}(111)$	1.804 (8)	$\mathrm{C}(2)-\mathrm{P}(2)-\mathrm{S}(2)$	113.4 (3)
$\mathrm{P}(2)-\mathrm{C}(201)$	1.807 (8)	$\mathrm{P}(2)-\mathrm{S}(2)-\mathrm{Cu}^{\prime}$	109.88 (10)
$\mathrm{P}(2)-\mathrm{C}(211)$	1.805 (7)		
Average phenyl C-C			
Ring $10 \quad 1$	1.37 (2)	Ring $20 \quad 1.37$	
Ring 11 1.	1.37 (2)	Ring $21 \quad 1.38$	(2)

Fig. 1. A view of the dimeric molecule $\mathrm{ICu}(\mathrm{bdte}) \mathrm{Cl}_{2}$. Thermal ellipsoids (for the non-phenyl atoms) are drawn at the 50% probability level.

Discussion. The molecule exists as a dimer $[\mathrm{Cu}(\mathrm{bdte})$ Cl_{2} containing two bdte ligands related by the crystallographic centre of symmetry. The two Cu atoms are bridged both by the ligand and by the Cl atoms. The Cu atom adopts a distorted tetrahedral coordination sphere of two Cl and two S atoms. The Cl atoms are not bonded symmetrically to the two Cu atoms $\left(\mathrm{Cu}-\mathrm{Cl}=2 \cdot 305, \mathrm{Cu}-\mathrm{Cl}^{\prime}=2 \cdot 639 \AA\right)$. The shorter $\mathrm{Cu}-\mathrm{Cl}$ bond is longer than that in $\mathrm{Cu}(\mathrm{bdtm}) \mathrm{Cl}$
(2.203 \AA), but both are typical for bridging $\mathrm{Cu}^{\mathrm{I}}-\mathrm{Cl}-$ Cu^{1} (Albano, Bellon, Ciani \& Manassero, 1972; Baenziger, Richards \& Doyle, 1964). The two $\mathrm{Cu}-\mathrm{S}$ bonds are intermediate in length between the two values obtained for $\mathrm{Cu}(\mathrm{bdtm}) \mathrm{Cl}$, but in the normal range for non-bridging tetrahedral $\mathrm{Cu}-\mathrm{S}$ bonds (Taylor, Weininger \& Amma, 1974). The bond lengths within the chelate show no unusual features. The two $\mathrm{Cu}-\mathrm{S}-\mathrm{P}$ angles are considerably larger (109.9, 106.6°) than in $\mathrm{Cu}(\mathrm{bdtm}) \mathrm{Cl}\left(91.5,95.7^{\circ}\right)$, reflecting the tendency for the S atom to bond tetrahedrally when the ring strain is lowered (Tiethof, Stalick \& Meek, 1973). There are no short intermolecular contacts.

Structural data are now available for the Cu^{1}-chloro complexes of $R_{2} \mathrm{P}(\mathrm{S})\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{~S}) \mathrm{P} R_{2}$ with $n=0,1$ and 2. As the electronic structure of the ligand is similar in each case, the differences in the Cu coordination geometry must depend on the steric requirements of the ligand. The bite of the $n=0$ ligand is too small ($\mathrm{S}-\mathrm{Cu}-\mathrm{S}=103^{\circ}$) to form a trigonal-planar complex, and the compound forms a S -shared dimer with a tetrahedral Cu coordination sphere (Cotton, Frenz, Hunter \& Mester, 1974). The $n=1$ complex has a larger bite ($\mathrm{S}-\mathrm{Cu}-\mathrm{S}=119 \cdot 2^{\circ}$) and can form either a trigonal planar monomer (Ainscough, Bergen, Brodie \& Brown, 1976) or the S-shared tetrahedral dimer (Brown, 1978). The $n=2$ complex (present study) is capable of a larger bite still, and prefers to bridge two Cu atoms with a shared Cl bridge.

I would like to thank Drs E. W. Ainscough and A. M . Brodie for supplying the crystals.

References

Ainscough, E. W., Bergen, H. A., Brodie, A. M. \& Brown, K. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1649-1656.
Albano, V. G., Bellon, P. L., Ciani, G. \& Manassero, M. (1972). J. Chem. Soc. Dalton Trans. pp. 171-175.

Baenziger, N. C., Richards, G. F. \& Doyle, J. R. (1964). Inorg. Chem. 3, 1529-1535.
Brown, K. L. (1978). To be published.
Cotton, F. A., Frenz, B. A., Hunter, D. L. \& Mester, Z. C. (1974). Inorg. Chim. Acta, 11, 111-117.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Taylor, I. F., Weininger, M. S. \& Amma, E. L. (1974). Inorg. Chem. 13, 2835-2842.
Tiethof, J. A., Stalick, J. K. \& Meek, D. W. (1973). Inorg. Chem. 12, 1170-1174.

[^0]: * Lists of anisotropic thermal parameters for the non-hydrogen atoms, hydrogen atom coordinates, bond lengths and angles and structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34025 (16 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square. Chester CH1 2HU, England.

